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Abstract. Static current—current correlation leads to a zero-frequency divergence (ZFD) in the
definition of optical susceptibilities. Previous computations have shown non-equivalent results for
two gauges p - A and E - r) for exactly the same unperturbed wavefunctions. We reveal that
these problems are caused by the incorrect treatment of the time-dependent gauge phase factor in
optical response theory. The gauge phase factor, which is conventionally ignored by the theory, is
important in resolving the ZFD problem and obtaining equivalent results for these two gauges. The
Hamiltonians with these two gauges are not necessarily equivalent unless the gauge phase factor
is properly considered in the wavefunctions. Both Su-Shrieffer—Heeger (SSH) and Takayama—
Lin-Liu—Maki (TLM) models oftrans-polyacetylene serve as illustrative examples in studying the
linear susceptibilityy® through both current—current and dipole—dipole correlations. Previous
improper results of; V-calculations and for distribution functions obtained with both gauges are
discussed. The importance of the gauge phase factor in solving the ZFD problem is emphasized on
the basis of the SSH and TLM models. As a conclusion, the reason for dipole—dipole correlation
being preferable to current—current correlation in practical computations is explained.

1. Introduction

The static current—current correlatiafh {o) [1-3] has been widely applied in optical response
theory for many decades, both in the definition of the linear susceptipifityor conductivity
o® [2], and in the definition of the non-linear optical susceptibilities sucly @5 where
n>2[1,3].

Within the semiclassical theory of radiation, which is also emphasized in the literature,
by Mahan and Subbaswamy [2, 4], Butcher and Cotter [3], Bloembergen [5], Shen [6], and
Mukamel [7], the electric field is treated classically, and propagation of electromagnetic waves
in a medium is governed by Maxwell's equations; that is, the electric ##&ld, 1) at some
specific position and timer can be described ast

E(r,t) = Eggkriot (1.1)
t To guarantee the correctness of the Hermitian of the Hamiltonian, the electricakfighduld be expressed as
Epcogwr) instead of a complex field [5]. But in the frequency analysis [2—-6], it is easier to use the form (1.1) to

describe the susceptibilities and this makes virtually no difference to the results. The notation for the definition of the
susceptibilities used here follows Butcher and Cotter’s notation [3].
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whereEy is the amplitude, an@# andw are the wavevector and frequency. Then, #l98 in
unit volumewv under the static current—currenk(fo-) correlation are conventionally defined
as follows [1, 3]:

n(g)ez ~ Xj(:j)o(gzv w1, ..., wn)

X(n)(Q;wlv"'awn)=_8nl 21+ .
€omwy €1Qw1 - - wy,

(1.2)

where
n
= — Z w;j .
i=1

Here,n® andm are the electron density and electron magss the dielectric constant, is a
unit dyadic,s, 1 is the Kronecker symbol, and

1717" 1 o
X;:J).O(Q; w1, ..., w,) = ol [ﬁ:| v / dry --- dr, / dry --- ds, / dr dr g ki

X (fjo(r, t)JAo(?"l, ty)--- JAO("’nv 1)) (13)

where V is the total volume[ is the time-ordering operator anf} is the static current
operator [3].

If we choose the static dipole—dipolB D-) correlation, therth-order susceptibilities will
be obtained as follows [3—7]:

17il"1 P
x(Q w1, .., ) = — I: —/drl drn/dtl dtn/dr dr g eerHics
nl|h| V

x (TD@, )D(r1,t1) - D(ry, 1)) (1.4)

whereD is the static dipole operator.

It is commonly held that the zero-frequency divergence (ZFD) seen in the static current
expression, equation (1.2), is only an apparent problem, and that the gaugeandp - A
will give exactly the same results for the same unperturbed wavefunctions [8]. In other words,
equation (1.2) and equation (1.4) should lead to the same result if one proceeds correctly.
In linear response theory, for a homogeneous and isotropic medium, Martin and Schwinger
have shown that the ZFD in the conductivity” arising from current expressions can be
cancelled by introducing a diamagnetic term ¢&fiterm) [9]. The cancellation of the ZFD
in the linear conductivity by a diamagnetic term is also discussed by Mahan, and Haug and
Jauho in their famous books [2, 10], with careful consideration of the limit sequenkexfud
oT. In the solid state, for full and empty bands, Aspnes had shown the equivalence of two
gauges (equation (1.2) and equation (1.4)) in a demonstration based on the assumption of the
cancellation of a ZFD term, equation (2.6), in his seminal workgé#-computations [11].
These works have strengthened the common belief in the equivalence of the two gauges as
regards the static dipole and the static current expressions. Also, the notion that the ZFD is
merely an apparent problem has usually been accepted with limited justification.

Although the ‘apparent’ nature of this ZFD has been emphasized by many people,
strictly speaking, as far as we are aware, the solution to this ZFD problem is seldom directly
obtained from &y Jp-correlation (like equation (1.2)) unlike in Martin and Schwinger’s original
proof[9]. Aswe see inthe calculation gf? for the solid state, the ZFD term is conventionally
isolated from the convergent term and is then discarded without a careful direct check [11].
Historically, this ZFD problem has been of no interest in view of the following facts:

T Mahan and Haug suggest a possible sequence limit [2, 10]: firstly setting the wavdveetdd, and secondly
setting the frequency — 0 when considering the linear conductivity? at zero frequency. If the long-wavelength
limit applies, the sequence condition felandw is automatically satisfied.
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(i) The gauge transformations seem to guarantee the equivalence of the two gauges for the
same set of wavefunctions.
(ii) Intransporttheory [10,12], the correctimaginary part offpé-correlation (Ref P (w)])
can still be obtained.
(iii) The ZFD problem (related to Ina{® (w)]) can usually be avoided by applying the
Kramers—Kronig (KK) relations to the imaginary part of thep-correlation [2,10,12,14].

Thus the equivalence of the two gauges has become well accepted in the community, and the
ZFD is widely considered to be at most a complex technical problem [2, 10].

Besides the assumptions made in the previous ZFD proofs [2, 3, 9-11], however, in
practical applications, there are always some puzzles challenging the above common belief.
In a careful study of the choice of gauge for two-photon 1s-2s transitions of the hydrogen
atom [8], Bassani, Forney, and Quattropani have found that on directly applying exactly the
same unperturbed wavefunctions, fiie- gauge leads to much faster convergence thap-tde
gauge when using a limited number of discrete intermediate states; nhumerical computations
also show a 50% difference in transition rate between these gauges if we justinclude all discrete
intermediate states. Thus, Bassail draw the conclusion thdt - r is a better gauge. Also,
in the study of oscillator strength in a superlattice by Peedkad, it turns out thatk - » and
p- A are non-equivalent gauges in the barrier region according to numerical computations [15].
Thus, in contrast to the above, Peetetral concluded that the position operaton the solid
state should be redefined and tipat A is much the better gauge. A recent study on a zinc-
blende semiconductor [16] again raises questions regarding the equivalence of the roles of
E . randp - A in representing the transition matrix of thé?-formulat.

Extensive studies on the optical properties of polymers [1,17-20] have been based on tight-
binding approximation (TBA) models, such as the Su-Shrieffer—Heeger (SSH) model [21]
and the Takayama-Lin-Liu—Maki (TLM) model [22] for weakly correlated systems, and
the Hubbard and Pariser—Parr—Pople (PPP) models for strongly correlated systems. These
models drastically reduce the complexity of the systems and provide a reasonable way of
obtaining real physical insight into many-body systems. For providing gauge invariance, a
U(1) phase transformation has been suggested [20, 23] for these models. Because of the use
of the static current formula without a diamagnetic term, there will be a ZFD problem in
the linear conductivityr ¥ (w). However, this ZFD problem has in general not been pointed
out clearly and it has obviously been neglected in the previous works [17, 20]. To avoid
the ZFD inc™® and to obtain a convergent result, Batistic and Bishop suggest subtracting
the term([ jo, jo]) (@ = 0) [19], which is supposed to be a diamagnetic term derived directly
from the TBA Hamiltonian. Unfortunately, as we will show in this paper, the diamagnetic term
derived from the U(1) transformation [20] cannot directly return the exp&Eigedio]) (w = 0)
term. Moreover, the experimentally observed two-photon absorption peak [24, 25}iffthe
spectrum otrans-polyacetylene has raised wide interest in finding a theoretical explanation.
From equation (1.2), on the basis of TLM models, the two-photon cusp has been obtained
analytically [1], but this has been criticized by others in view of the dipole formula approach
and other physical concerns [26—32]. Recently, a quite different analytical form of the
x@-spectrum [33] has been obtained fBxD-correlation as compared to that fdgJo-
correlation [1]. The above discrepancies have already cast some doubt on the rooted belief of
the equivalence afyJo- and D D-correlations.

In this paper, we will re-examine the concepts of the gauge transformations and directly
show that the gauge phase factor, which has not been sufficiently emphasized previously

t In Khurgin and Volsin's work [16], they pointed out the different diagonal matrix elements ip‘®édormula that
occur for thep - A andE - r gauges.
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and is conventionally ignored in the current—current correlation scheme [1, 3], is actually very
importantin optical response theory for resolving this ZFD difficulty, and recovering equivalent
results for the two gauge®(- A andr - E). Therefore, the static current operatfyris no

longer suitable for considering the equivalence between the two gauges; instead, we should
include the induced field currents (IFC) which are introduced by the gauge phase factor. To
illustrate the effect of the gauge phase factor, rather than abstract concepts, we choose just
the linear response in one-dimensional (1D) periodic TBA models, such as the SSH and TLM
models, as our examples. The concepts of the gauge phase factor in the specific linear examples
can also be extended to the non-linear optical response theory and two-dimensional (2D) or
three-dimensional (3D) cases.

The paper is organized as follows. In section 2, we will re-examine the concept of the
gauge transformation and discuss the importance of the gauge phase factor in optical response
theory. The problems caused by ignoring the gauge phase factor are discussed within a general
scheme, independent of the models. To give an intuitive picture, the linear optical response
in periodic TBA models, such as SSH and TLM models, is investigated in this paper. The
Hamiltonian for D D-correlation E - » gauge) is discussed (section 3.1), and we will study
the linear susceptibility ® for D D-correlation in section 3.2x® under current—current
correlation is discussed in section 4. The SSH Hamiltonian ipthé gauge will be obtained
in section 4.1. Before applying the gauge phase factor, the ZFD problentofirising
from JoJo-correlation is illustrated in section 4.2; previous qualitatively different solutions for
x® and the practical difficulties in this ZFD problem are also analysed on the basis of the
models (section 4.2). After applying the gauge phase factor to the wavefunctions, a convergent
result can be obtained and the ZFD problem will be resolved (section 4.3). The conditions
for equivalence between the two gauges are discussed in section 5.1 and the influence of the
gauge phase factor on the initial distribution functiik) for the two gauges is investigated
(section 5.2). The reasons for some previous puzzles regarding the choice of gauges are
discussed in section 5.3. Conclusions emphasizing the implications of our work will be given
in section 6.

2. The gauge phase factor in gauge transformation

Gauge transformation is already well understood in optical response theory [34, 35]. The
assertion of the equivalence of two gauges rests upon the concept of gauge transformation.
If an electromagnetic field is applied, the Satlinger equation is given by

iﬁ%w(h nH= [%(ﬁ—qA)z’fV(THW} v(r,1) (2.1)

wherer (r, t) is the exact wavefunction at space positioand the specific time, m is the
particle massy is the electrical chargé/ (r) is the potential, andt and¢ are the vector and
scalar potentials respectively, under the following transformation:

A— A =A+Vf (1)
, 9 (2.2)
¢»—9 =¢—§f(7‘,l)

wheref (r, t) is arbitrary, and4d’ and¢’ are the new vector and new scalar potentials after the
transformation (2.2). It can be shown [35] that the form of the 8dimger equation will be
exactly the same if the old wavefunctignundergoes the following change into the new exact
wavefunctiomy’:

v — ¢ =Dy = To(r, D)y (2.3)



Zero-frequency divergence and the gauge phase factor 9827

where the gauge phase facty(r, ) is defined as
Fy(r.1) = %f(r, 0. (2.4)

The above equations (2.2) and (2.3) are called the gauge transformatigiiljoirans-
formation [23]).

The long-wavelength approximation [2, 3] is used in this paper—that is, wektaké in
equation (1.1), and the electric fiellis described a& = Eqe ™",

We consider the following initial scalar and vector potentials inEher gauge:

A=0 ¢=—E-r. (2.5)
After choosing the gauge phase facKyras
gE-r _q
=1 _—2A. 2.6
T The BT (2:6)
from equation (2.2) we obtain the new vector and new scalar potentials fpr-thegauge as
E
A =— ¢ =0. (2.7)
iw

The connection between the old and new wavefunction is determined by equation (2.3).

In perturbation schemes for studying the optical response, conventionally people use
exactly the same set of unperturbed wavefunctigfiér, 1) of the HamiltonianH, (when
A = 0 and¢ = 0 in equation (2.1)) to serve as the expansion basis for Bbthr and
p - A gauges [3,5, 8]. However, we should point out that the wavefunctions forBeth
andp - A gauges (before and after gauge transformation) should also be restricted by the
gauge phase factdr, from equation (2.3); therefore the two basis sets for the two gauges
arenotexactly the same unperturbed wavefunctigifér, r)—they differ by the gauge phase
factor F,. And the Hamiltonians under the two gaugés-(r andp - A) are not necessarily
equivalent if they are treated independently and are isolated from the connection between the
wavefunctions under the two gauges. Unfortunately, this crucial point has not been clearly
stated, and was obviously missed in the perturbation scheme studies [3, 5, 6]. In the current—
current correlation scheme, in particular, the gauge phase factor’s contribution is obviously
ignored and thet?(¢)-term is considered as having no physical meaningt. Thus the current—
current correlation is conventionally reduced tdwd,-formula such as equation (1.2), and
the equivalence between current—current and dipole—dipole correlations is usually considered
as represented byyJo- and D D-correlations with exactly the same basis of unperturbed
wavefunctions [1, 3,5, 8,11, 15].

An elegant review by Langhoff, Epstein, and Karplus covered the topics of time-
dependent perturbation theory [36]; they firmly pointed out that the time-dependent phase in
a wavefunction is very much essential and that the incorrect treatment of the time-dependent
phase will cause secular divergence in time-dependent perturbations. In field theory, it is also
well understood that inappropriate treatment of the phase factor will cause divergence [2].
Since the gauge phase factor, equation (2.6), is obviously time dependent, neglecting this
phase factor will cause a ZFD in the susceptibility computations, as in the examples that we
will provide in the following sections.

t On p 111 of Butcher and Cotter’s book [3], they directly pointed out thatithe) term has no physical effects and
merely introduces a time-dependent phase factor into the wavefunction. Thus>f@, obviously equation (1.4)
and equation (1.2) simply effect the following—J replacement:D — J/(iw;). (See p 107 of [3].) Although
in Bloembergen’s notes [5U2(¢) is seemingly included in thg @-derivations (p 35), the results obtained by
Bloembergen (equation (2-48)) are exactly the same as the results obtained without consideARg therms.
(See equation (4.61) given by Butcher and Cotter [3] withithef replacement.) This shows that?-computation

is a special case in non-linear susceptibility [11]. And in #4&-derivations on p 172 of [5], the expansion basis is
the unperturbed wavefunctions.
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3. Linear response from dipole—dipole correlation

Having appreciated the importance of the gauge phase factor, we choose the following single-
electron periodic models—the SSH (otitkel) model and the TLM model—as our examples
for the following reasons:

(i) These periodic models were widely applied in polymer theory in the 1980s and early
1990s; remarkable results have been obtained [37].

(i) The optical susceptibilities obtained from these models are analytically solvable and can
be compared with previous results [17, 20].

(i) In both the SSH and the TLM models, Peierls instability [37] leads to the semicond-
uctivity of the two-band structure—with the valence band fully filled and the conduction
band empty. It is very obvious from the physical point of view that, as the frequency of
the electrical field goes 0 (reaches the static electric field), the linear conduetiVignd
the linear susceptibility® will not be reduced to the Drude formula as in the case of
metals [12, 13], and will not cause a ZFD problem.

In this section, we will first discusg™ ando  for infinite chains (where the number of
(CH) units N goes to infinity) under thé® D-correlation.

3.1. The SSH Hamiltonian
Based on the periodic TBA, the SSH Hamiltonian [21] is given by

Al 4 A At A
Hgsy = — Z |:fo + (—1)15] (ClT+l,sCl,s + CIT,SCHLX) (3.1)
l,s

wherer is the transfer integral for the nearest-neighbour sitess the gap parameter, and
¢/, (€., creates (annihilates)a-electron at sité with spins. In the continuum limit, the
above SSH model will give the TLM model [22]. For the SSH model, each site is occupied by
one electron.

If we want to include the electron—photon interactibn » directly via the polarization
operatorP, where

P=>"RC/C (3.2)
1
and
R =la+(—=D'u (3.3)

is the sitet position with the lattice constaat and dimerized constamt[21], we will face
the problem of ill definition ofP in periodic systems [11,15, 20]. To solve this problem, we
consider an imposed periodic condition for the position operafdd, 15]. Expressing the
position operatof in terms of Bloch statef:, k) = u,,,k(r)e”“"", whereu, () is a function
that is periodic under translation by a lattice vector [14], we will be able to satisfy the periodic
condition forr as follows:

Tnk.n'k — i(Sn,n’ Vk(S(k - k/) + Qn.n’ (k)a(k - k/) (34)

and
Q(k) = I;/u;k(r) Vit k(1) dr (3.5)

wherev is the unit-cell volume.
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We diagonalize the Hamiltonian equation (3.1) in the momentum space by applying
consecutive transformations under the operafﬂrandé, [21]. The excitations of electrons
in the conduction band and valence band with momentuand spins, &,If_;(t) and&,:i(t),
respectively, are obtained. '

If we choose the spinor descriptioly (1) = (@], (t), &,".(1)), the SSH Hamiltonian
including E - » in momentum space is described by

Hssp(k,t) = Ho+ Hp.r (3.6)
where
Ho = > (), (Dosin s (1) (3.7)
—n/(2a)<k<n/(2a),s
and
Hg., = —DEE®". (3.8)
From equation (3.4), the dipole operafdrcan be obtained as follows:
R n R 0 o~ oA
D=e > <ﬂ(k) U o2, +i ) Sw,s) (3.9)
ok
—7/(2a)<k<m/(2a),
where
Atoa
k) =— + 3.10
Bl = =5+ (3.10)

is the coefficient related to the interband transition between the conduction and valence bands
in a unit cell of size 2 and the second term in equation (3.9) is related to the intraband trans-
ition [11], e is the electric charge, and theare the Pauli matrices: is a dimerized constant
related to the lattice distortion [21].

3.2. Linear response through tle - » gauge
For the linear susceptibilityxgls)H(Q,wl) can be obtained from equation (1.4) and equ-

ation (3.9):
Xy (—on, o) = 2| - eZEZ/OOTr i 26k w)i LGk, o — o]
SSHE T Rl La) o okl ek

+ B(k)o2G (k, w) i ;—k [Gk, 0 — w)] +i aa_k [B(K)G (k, 0)02G (k, 0 — w1)]

dw

5 (3.11)

+ B(k)o2G (k, ) (k)o2G (k, @ — wl)}

whereL is the tgtgl chAain length and the Green funct@tk, ) is the Fourier transform of
Gt —1t)=—i(Ty @)y (")), given as follows:

w + wro3

Gk, w) = - 3.12
(k) = —— I (3.12)
with w; = ¢(k)/h ande = 0*.
From equation (3.11), we haygy,, (0)= x{oy (-, ®):
e2(2tpa) [Y° (1 — néx?)? dx
X (@) = =2 (3.13)

2r A% J; [(1—62x2)(x2 — D)]Y2x2(x2 — z2)
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wherex = hwy /A, z = hw/(2A), § = A/(21), and the relative distortion = (2u)/a.
Equation (3.13) can be integrated numerically if one changsx + ie when considering
the lifetime of the state [26—29]. For polyacetylene, by chooging 2.5 eV, A = 0.9 eV,
a=122Au=0.04A, ande ~ 0.03[26-29], we obtaid = 0.18 andy = 0.07. The values
of | X;?,ﬂ with and without they-contribution are plotted in figure 1. As we can clearly see
from the graph, the contribution of the relative distortipis very small (about 1%). We can
observe the ‘Umklapp-enhancement’ peak at 1 compared with the peak= 5.56 (1/§).
These results were also discussed in previous work [20].

10

()| (10 “esu)

@
SSH

IX

- s Figure 1 |X§9p @) with z = Fiw/(24), € = 0.03,
3 = 0.18, and forn = 0.07 (solid line) orp = 0
(dashed line).

If the continuum limit is applied—that i$, — 0*, n — 0%, ¢ — 0%, and 2pa — hvyF—

then the above integral equation (3.13) approaches the linear optical suscep@ﬁj}‘i}ym)
in the TLM model [22] as follows:

2Ry
@ —_S"F q_
Xrim (@) = 27 A2;2 Q-7@) (3.14)
where

arclslr(z)2 21
v/ 1—z

f@= 1 . (3.15)
_cosh () N i 251

wWz2—1 2z/72-1

The conductivityo (w) is given by—iwx ', and Ref @ (w)] is exactly the same as previous
results [17, 20].

The calculated,; ,, and the absolute value gf.;,, are shown in figure 2 and figure 3,
respectively.

Indeed, the above computations are based on the perturbation schem?qiy\(ithand
g@k,s(t) as the unperturbed creation and annihilation operators under the Hamiltéeian
(equation (3.7)). From the above figures and expressions, it is very obvious thatthe
correlation (orE - r) approach will not have a ZFD ip™ or o?. Straightforward comput-

ations readily show that equation (3.13) and equation (3.14) obey the KK relations. These
results are certainly reasonable in view of the physical picture.
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z Figure 3. |2, (@) with z = i/ (2A).

4. Linear response through current—current correlation

4.1. The SSH Hamiltonian in the vector potential form

The tight-binding Hamiltonian in thg - A form should be invariant under gauge transform-

ation (equation (2.2) and equation (2.3)) [20, 23]. If we change the phase of the one-patrticle
wavefunction in the tight-binding approximation:

Cl(r) =€Cy(r) (4.1)

we must modify the kinetic energy term. The unperturbed Hamiltodigin the Wannier-
function basis as follows:

Ho= ) 1(r =) (C]r)Ci(r) + Cl(r)Cu(r)) (4.2)

s,r, 7’

is modified as

Ho — Hjy = Z t(r—1) [C;T(r) exp(—iq / ' dz - A(x)/ﬁ>c;(r’)

s,r,r

+CM(r') exp(iq / ' dm-A(x)/E)c;(r)] (4.3)
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wherer (r — r') represents the hopping from positiero »', C(r) creates an electron at site
r with spins, ¢ is the particle charge. The above transformation is also known as the Peierls
substitution [20]. Equation (4.3) has some kind of general meaning in TBA models and is
frequently applied in theoretical work [38].

If the function f (r, t) is arbitrary in equation (2.2), it is easy to verify that the above TBA
Hamiltonian equation (4.3) is invariant if the local ph&s@ equation (4.1) is defined as

O(r, 1) = %f(r, 1) = %A . (4.4)
As a specific example, the SSH Hamiltonian with the vector potertiahould be as
follows (we changea to A since it is the 1D case anrds the electron charge)t:

Al « : 7 A I A

HSSH (A) — _ Z [ZO + (_1)15] (Cl’Ilyse—leA(R[—RHl)//’lCl/.s + C]/IveleA(Rl_RHl)/hC]/+1,5)-
l,s

(4.5)

Equation (4.5) has been derived in full detail by Gebhetrdl [20].

4.2. The result without the gauge phase factor

Under the assumption that the gauge phase factor (4.4) has no physical meaning [3], we
ignore the phasé and treat the creation and annihilation operai{cd?,g} and{é;} as the
same as the unperturbed creation and annihilation oper{zﬁﬁ}sand{@,} [20, 23] defined in
equation (3.1).

The abovep - A Hamiltonian equation (4.5) can be expanded in powers of the external
vector potentiald, and we obtain the following:

Hgsn(A) = Ho — JoA + O(A?) (4.6)
whereH, is given by equation (3.1), and

A e A A A At A
Jo=— Zuﬁ [zo + (_1)15} [a — 2(-D)'u] (/1 Cis — € Crary). (4.7)

The current operatof is obtained from the following equation:
~ i~ A
J= ﬁ[p, H]. (4.8)

From equation (3.2) and equation (4.6), we obtain the current operator for the SSH
Hamiltonian as follows:

-iSSH = .io + .ilA (49)
whereJy is defined by equation (4.7), anfd is defined as follows:
2
N e A 2 A ~ At A
Ji=— Z(ﬁ) [lo + (—1)Z§:| [a — 2(-1)'u] (Cztrl,scl,s + CISC1+1,S)~ (4.10)

l,s
As in the computations in section 3, we transform the Hamiltonian equation (4.6) and the
current operators equation (4.7) and equation (4.10) into the momentum space and obtain the
following:

Jothy = 5 kz [A0t0i] (Vowie o) + Bok i, Wi, (0] (4.11)

T Please bear in mind that we have not written out another term—the scalar patéRtial), which is time dependent
in the above Hamiltonian equation (4.5). However, in section 44tha case), that termis 0. Thi(R;, ¢) term will
appear if the gauge transformation is made.
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and

2
Ji(k) = (%) kZ [Al(k)x@,f, (D035 (1) + By, s(t)aﬂ&k,sm] (4.12)
with Ag(k), Bo(k), A1(k), and B4 (k) defined as follows:

_ (210)%(1 — 82) sin(2ka)

Ao(k) =
2e(k
by - 20 8;)) (4.13)
0 )___a(k) ne(
and
. 2 _ 4[0A77
Ar(k) = (L +n%)e(k) 78

(210)%n(1 — §?) sin(2ka) (4.14)

&(k)

n, 8, ande (k) in the above equations are defined the same way as in section 3.

Applying equation (1.2) and equation (1.3), and considering the diamagnetic current
J1(k)A obtained from the above SSH Hamiltonian equation (4.6), we obtain the linear
susceptibility underyJo-correlation as follows:

By(k) =

1 1
X (w1, 1) . XD (—w1, 1)

—iwf —iwf

1
X;%;[(_wl5 C()]_) =

(4.15)

with

, 1 21 o0

Xj(%'())(_wl’ w1) =2 [ﬁ:| <%> I3 Xk: /_oo Tr{Ao(k)o3G (k, w) Ag(k)o3G (k, w — w1)
+ Ag(k)o3G(k, w)Bo(k)o1G (k, w — w1)
+ Bo(k)o1G (k, w)Ag(k)o3G (k, ® — w1)

+ Bo(k)o1G (k, w)Bo(k)o1G (k, w — w1)} g—: (4.16)

2

, (I

rP ooy =-2(F) 13 [ Tram006k 0 - o
k —00

+ Bl(k)O']_G(k, w — a)l)} (21—;0 (417)

where the Green functio@i (k, w) is defined by equation (3.12). By straightforward comput-
ation, we can obtain the following:

2 1/8 2\2
") _ 5 (2t0a) (1—néx*)“dx
onjo(w) = -2 i 1 [(1—82x2)(x2 — D)]Y2(x2 — z2) (4.18)
and
2(2 Y8 [(1 +n2)82x2 — 2
7P () = 2i° (2toa) (77 L +n7)5"x" — 208 dx (4.19)

ah? Ji [(1=8H (2 - D]V

Equation (4.19) is a constant independentaid it is obviously not the terr jo, jo]) (@ = 0)
suggested by Batistic and Bishop [19].
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From equation (4.15), equation (4.18), and equation (4.19), we obtain
) ?(2t0a) {/1/5 (1 —ndx?)? dx
1

Xssn (@) = o 822 [(1— %) (2 — DI2(2 — 2)

(4.20)

/1/5 [(1+1?)8%x? — 2n8] dx
o [A-aAa2 - D2

wherex, A, z, §, andn are all the same as in equation (3.13).

If the continuum limit is applied (as in section 3), we find that the contribution
(equation (4.19)) from the diamagnetic term (theterm) disappears. We obtain the following
susceptibility under TLM models:

2EU}:
21 A272
where f (z) is defined by equation (3.15).
We plot [xier |, X7ty and| x| in figure 4, figure 5, and figure 6, respectively, with
the same parameters as in section 3. From the analytical form equation (4.21) and the figures,
we find that the first term in equation (3.14) disappears in Ipis-formula; however, this
important feature has not been reported in the previous works [17, 20].

1
X;”(L)M(a)) =

S (@) (4.21)

()] (10 “esu)

)
Ss|

Figure 4.  |x43), ()| obtained through

JoJo-correlation (solid line) versusggls)H (w)|
obtained throughD D-correlation (dashed
line) with z = hw/(2A), fore = 0.03,n =

IX

0 | 1 1 /(1) :
0.07, ands = 0.18. |xggy (w)| obviously
0.0 0.5 1.0 15 2.0 shows the ZFD if the gauge phase factor is
Z not considered.

Within TLM models, the missing diamagnetic term can be understood directly from
the Lagrangiant, which only contains the first-order terms of the momentum opgrator
Obviously, equation (4.20) and equation (4.21) strongly diverge whenO for the real parts
in both equation (4.20) and equation (4.21). The above results are certainly wrong, since they
do not follow the KK relations—besides the ZFD problem. Careful comparisons were made
between equations (4.20), (4.21) and equations (3.13), (3.14); it was found that the correct
imaginary parts obtained from thigJo-correlation equation (1.2) and equation (1.3) are still
maintained. The comparisons also show that the absorption part (related to imaginary part)
based on thé, Jo-correlation will still be correct. This conclusion is not novel to those working
on the transport problem: that the Kubo formula basedf-correlation can be applied is

t The Lagrangian for the TLM models is described as [1,22} [ dx §/T(x){ifi 3, + io3vr 8, + o1A} (x). The
vector potentiald is included by changing-i% 9, to i 8, — eA; it does not contain thé2-term from the Lagrangian
directly.
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Figure 5. The real part (solid line) and the imaginary part (dashed Iine)(;éﬁ)M(w) with
z = hw/(2A). This shows the ZFD that is present in the real part when the gauge phase factor is
not considered.

40

w
o
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(w)| (10 esu)

()
LM

IX
o

2.0

Figure 6. |X/T(?M (w)| obtained through théy Jo-correlation (solid line) compared witb{(l)

()|
TLM
obtained through th® D-correlation ot/ J-correlation, considering the gauge phase factor (dashed
line) with z = iw/(2A). |x)P,, ()| shows a ZFD.

already common knowledge [2]. People usually resort to the KK relation to avoid the real-part
ZFD difficulty [12].

But how to explain these difficulties (such as the ZFD and violation of the KK relation in
equation (4.20) and equation (4.21)) now becomes a task. The long-wavelength approximation
usedinthe above examples already eliminates the possible ZFD caused by the limit sequence for
k andwt. One might argue that the ZFD problem could be solved by including a diamagnetic
term, such as the effective maas, and that the electron-densityo} assumption can be
made in this solid-state problem [13, 14]. In fact, these assumptions are awkward, because the
parameters:* andng in diamagnetic terms cannot be predicted in the models. For example,

T Mahan and Haug suggest a possible sequence limit [2, 10]: firstly setting the wavdveetdd, and secondly

setting the frequency — 0 when considering the linear conductivity? at zero frequency. If the long-wavelength
limit applies, the sequence condition felandw is automatically satisfied.
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in the above SSH and TLM models; andng could be arbitrary [37]. In the TLM model, you
cannot include the diamagnetic term directly from the Lagrangiant. For the SSH model, the
diamagnetic term can be included in equation (4.9) from the TBA Hamiltonian equation (4.6),
but you still cannot solve this ZFD problem, as we clearly see from figure 4 and equation (4.20).
Moreover, if one uses diamagnetic terms to cancel the ZFD, the assumption regarding this
property of the medium should be included in the proof [2, 9, 10].

The conventional way to treat this ZFD problem is to separate the divergent terms from the
convergent term and discard them, with some possible physical explanations [11]. Fortunately,
in linear response theory, neglect of the diamagnetic term does not cause so much trouble, since
the imaginary part of thdyJp-correlation is still correct [2, 10, 12]. It is not a big surprise
that people have not taken this ZFD problem seriously, although doubts have always existed
regarding the two gauges, especially in models [8, 15, 35].

4.3. Resolving the ZFD by using the gauge phase factor

As we demonstrated above, the diamagnetic term directly obtained from equation (4.5) cannot
solve the ZFD problem. This ZFD problem, which is a conceptual problem as we have already
pointed out in section 2, is caused by the conventional careless treatment of the gauge phase
factor in optical response theory. In this part, after considering the contribution of the gauge
phase factor in the J-correlation, we will recover the same results P as were obtained
from the D D-correlation within both the SSH and TLM models.

As we discussed in section 2, the new creation opetgfaand annihilation operata?; in
equation (4.5) should be differentiated by the gauge phase factor from the unperturbed creation
operatorf?lT and annihilation operatofs,. Following equation (2.3), we obtain the following,
after the local phase factor is consideredi:

) = deARIRE,. (4.22)
Thus, by the above relation, the Hamiltonian in momentum space should undergo the
following change:

H(k) — H() (4.23)
where
Kk =k+ %. (4.24)
For the SSH Hamiltonian, we have the following new Hamiltonian;
H™ (k) = HI (k) + H“" (k) A + O(A?) (4.25)
whereHj" (k) is defined as in equation (3.7) and
H{™ () = == ij Bo(k)i) (o1, (0). (4.26)

. Thg new current operataf""“)(k) can be obtained from the commutator equation
[D(k), H"" (k)]/(ih) as follows:
T (k) = T3 (k) + T (k) A + O(A?) (4.27)

t The Lagrangian for the TLM models is described as [1,22} [ dx §T(x){if 8, + iozvr 8, + o1A}0 (x). The

vector potentiald is included by changing-i%d, to i 8, — eA; it does not contain tha2-term from the Lagrangian
directly.

T Strictly speaking, this gauge phase factor in this paper is an approximate of the diagonal elements in the matrix of
the dipole operatob [20,23]. As in the example we give above, the diagonal term is enough for obtaining convergent
results in the linear case. But for non-linear cases ik and ®, the non-diagonal terms of the-matrix will be
important for cancelling the ZFD problem through thé-correlation. Certainly the procedures for including the full
gauge phase factor will be complicated and thus impractical fos theorrelation.
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wherefg”” (k) is exactly the same as equation (4.11) and

2
Jev ) = (%) > [Ar b Oosdi o + B i (0w ) ] (4.28)
ks
where
new _ Bg(k)
R (4.29)
new 2tpA .
B () = —Ao(k) [52 ot n} :

Ao(k) and By(k) are defined in equation (4.13).

After considering the gauge factor, we find that the new current operfgttck) is the
same as the static currefg(k), but thatJ;** (k) is different from the static currenf (k); we
call the current differences betweéf¥" (k) and the static currentg k), J1(k), etc induced
field currents (IFC), since they are introduced by the gauge field.

Through the evolution operator in the interaction picture [2], itis easy to derive the formula
for the x |}’ as follows:

@ (€]
ngwhgw (—w1, w1) + Xjffﬂ' (—w1, 1)

D) —_
X jrew jrew (—@1, @1) = it (4.30)
where
17 [ea\*1 o
Kjghupgen (=01, 01) = 2 [ﬁ} (7) T / Tr{Ao(k)03G (k, ®) Bo(k)o1G (k, & — w1)
k —0oQ
dw
+ Bo(k)o1G (k. ) Bo(k)on G k.  — wn) 5~ (4.31)
JT
ea\%1 °
Kjon (—1, 01) = _2<f> - Z/ TH{AX" (k)o3G (k, @ — w1)
k —oQ
d
+ B (k)01G (k, @ — w1)) 2—“’ (4.32)
JT

Equation (4.31) gives exactly the same result as equation (4.18), which is computed
throughJo Jo-correlation, while the contribution fromi*** in equation (4.32) can be obtained
as

) €2(2tga) [V (1 —néx?)? dx
X new (@) = 2i = RN 5 3"
= 7h 1 [(1—=82x2)(x2 = D]Y2x
The above term (4.33) actually(fso, jo]) (w = 0), suggested by Batistic and Bishop [19].

Using equation (4.18) and equation (4.33), equation (4.30) leads to exactly the same result
as equation (3.13) and equation (3.14), which were computed throudhheorrelation.

(4.33)

5. Discussion

5.1. The condition for equivalence between two gauges

The above examples based fyVo- and D D-correlations show the importance of the gauge
phase factorF, in optical response theory. The equivalence of the two gaufesr(and

p - A) should not be based on exactly the same sets of wavefunctions; they should differ by
the gauge phase factor. This crucial point has never been clearly pointed out previously. The
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conventional equivalence between the static current—curigifg-§ correlation and the static
dipole—dipole D D-) correlation is not maintained; instead, we should consider the induced
field currents (IFCs) which are introduced by the gauge phase factor. For example, to consider
x@ in the periodic models, we should apply the phase shift fioto « (x = k + e A/R)

for the basis wavefunctions (or through the creation and annihilation operators in models) to
obtain the new current operat(fﬁew. Thus, the equivalence between current—current and
dipole—dipole correlations should be understood as the situation when all IFCs are included.
This paper’s conclusion that the time-dependent gauge phase factannot be ignored in

the perturbation scheme is also consistent with the results of Langtalf36].

5.2. The initial distribution function in two gauges

In optical response theory, one is much more interested in the population of the states than the
phase factor. Recently, femtochemistry experiments [39] have been able to reveal the phase
factor’s effect from the vibrational modes of nuclei as distinct from the population effect (or
distribution function) of states. To some extent, the phase factor’s influence on the optical
response has begun to attract interest. Although our treatment of the optical susceptibilities is
still in the framework of non-vibrational nuclei, the gauge phase factor’s effect in the theory
is still visible in the above computations.

Another important feature caused by the gauge phase fagtar the influence on the
initial distribution functionf, (k) of the two gauges. If all particles are in the ground st&ag‘ie

of the unperturbed HamiltoniaH, when the electric field is applied at time = 0, under
the perturbation scheme we can use the set of unperturbed wavefurigtfinsith the initial
distribution function

fg(k) =1
fa(k) =0 for all othern # g.

Previously, we used exactly the same initial distribution function, like equation (5.1), for both
gauges.

As we showed in the previous sections, the exact wavefunctions for the two gauges
should differ by a time-dependent gauge phase factor. This conclusion also holds under the
perturbation scheme. Thus, the initial distribution functions in two different gauges are not
necessarily exactly the same as equation (5.1), and they should be carefully considered when
choosing the basis sets.

Specifically, for theE - » gauge, we should choose unperturbed wavefunctions as the basis
to avoid the ZFD directlyt; then the initial distribution function can be equation (5.1), since
the initial ground state isrg. But for thep - A gauge, since the new ground state should be
efs wg according to equation (2.3), there are two ways to set the initial distribution function:

(5.1)

(i) If we have already considered the gauge phase factor in our new basis set—that is, if we
use{€’y 0} as our basis—the distribution function is still like equation (5.1).

(i) If we still use the unperturbed wavefuncti¢n®} as our basis, we should project the initial
wavefunction &% 1/’2 onto the basis sét/°} instead of directly applying equation (5.1) as
our initial distribution function.

The latter is much more complicated, since the initial set of distribution functions will be time
dependent. In the previous example that we gave, we used the first method under the local

t Infact, this point has not been pointed out clearly previously, even in the Genkins—Mednis appf&aistdefined
in terms ofk instead ofk. Since the basis for th® - » gauge is chosen to be the exact eigenstates under-tie
gauges, this will cause a ZFD directly undgr » gauges even for linear conductivity! Please see [40].
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phase approximationt. Both ways of treating the initial distribution function fopthet
gauge are complicated; in this respect, the galiger is much better. This conclusion has
actually already been tested in practical applications [2-8, 10,11, 26-33].

5.3. Some previous puzzles

In explaining the non-equivalence of results for the two gauges, some of the literature has been
emphasized by otherst. However, such explanations have lacked direct proof, and the effect
of the gauge phase factor has been ignored. The above two subsections provide qualitative
explanations for the non-equivalence puzzles for the two gauges that arise in the numerical
computations [8, 11, 33]. On the basis of the same set of unperturbed wavefunctions [8], the
computations of Bassast al showed that for thé& - » gauge the convergence is much faster
than for thep - A gauge, and reveal that the distribution equation (5.1) is appropriate for the
E - r case but not for thg - A case, which is certainly reasonable in view of our discussion

in section 5.2. The ®-computation is a special case [11]§, since some terms could be zero

if symmetry is applied [35]. Unfortunately, non-equivalences of the results fovghig
correlation andD D-correlation are magnified in the®-computations. As an example, the
spectra ofy @ for polyacetylene are different for the two gauges [1, 33]. These differences
can be understood qualitatively through considering the gauge phase factor.

6. Conclusions

From the computations and discussion above, we concluded that equation (1.2) based on the
static current is improper and leads to a ZFD problem; thus, IFCs generated from the gauge
phase factor should be included to resolve this difficulty. Generally speaking, the Hamiltonians
under the two gauges are not necessarily equivalent unless the gauge phase factor is considered
properly through the wavefunctions. Because of the problems regarding the choice of the initial
distribution function and the basis sets under the two gauges (section 5.2), it would be very
tedious to carry out perturbation computations based op th& gauge rather than the - r

gauge. If a careful computation was made based on the concept of the gauge phase factor,
the two gauges would lead to equivalent results. Although our computations are chiefly based
on a 1D periodic model, it can easily be seen that the chief conclusions of this paper can be
expanded to 2D, 3D, and other systems on the basis of the general illustrations in section 2.
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