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Abstract. Static current–current correlation leads to a zero-frequency divergence (ZFD) in the
definition of optical susceptibilities. Previous computations have shown non-equivalent results for
two gauges (p · A andE · r) for exactly the same unperturbed wavefunctions. We reveal that
these problems are caused by the incorrect treatment of the time-dependent gauge phase factor in
optical response theory. The gauge phase factor, which is conventionally ignored by the theory, is
important in resolving the ZFD problem and obtaining equivalent results for these two gauges. The
Hamiltonians with these two gauges are not necessarily equivalent unless the gauge phase factor
is properly considered in the wavefunctions. Both Su–Shrieffer–Heeger (SSH) and Takayama–
Lin-Liu–Maki (TLM) models oftrans-polyacetylene serve as illustrative examples in studying the
linear susceptibilityχ(1) through both current–current and dipole–dipole correlations. Previous
improper results ofχ(1)-calculations and for distribution functions obtained with both gauges are
discussed. The importance of the gauge phase factor in solving the ZFD problem is emphasized on
the basis of the SSH and TLM models. As a conclusion, the reason for dipole–dipole correlation
being preferable to current–current correlation in practical computations is explained.

1. Introduction

The static current–current correlation (J0J0) [1–3] has been widely applied in optical response
theory for many decades, both in the definition of the linear susceptibilityχ(1) or conductivity
σ (1) [2], and in the definition of the non-linear optical susceptibilities such asχ(n), where
n > 2 [1,3].

Within the semiclassical theory of radiation, which is also emphasized in the literature,
by Mahan and Subbaswamy [2, 4], Butcher and Cotter [3], Bloembergen [5], Shen [6], and
Mukamel [7], the electric field is treated classically, and propagation of electromagnetic waves
in a medium is governed by Maxwell’s equations; that is, the electric fieldE(r, t) at some
specific positionr and timet can be described as†

E(r, t) = E0eik·r−iωt (1.1)

† To guarantee the correctness of the Hermitian of the Hamiltonian, the electrical fieldE should be expressed as
E0 cos(ωt) instead of a complex field [5]. But in the frequency analysis [2–6], it is easier to use the form (1.1) to
describe the susceptibilities and this makes virtually no difference to the results. The notation for the definition of the
susceptibilities used here follows Butcher and Cotter’s notation [3].
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whereE0 is the amplitude, andk andω are the wavevector and frequency. Then, theχ(n) in
unit volumev under the static current–current (J0J0-) correlation are conventionally defined
as follows [1,3]:

χ(n)(�;ω1, . . . , ωn) = −δn1
n(e)e2

ε0mω
2
1

Î +
χ
(n)
j0j0
(�;ω1, . . . , ωn)

ε0 i�ω1 · · ·ωn (1.2)

where

� ≡ −
n∑
i=1

ωi.

Here,n(e) andm are the electron density and electron mass,ε0 is the dielectric constant,̂I is a
unit dyadic,δn,1 is the Kronecker symbol, and

χ
(n)
j0j0
(�;ω1, . . . , ωn) = 1

n!

[
1

h̄

]n 1

V

∫
dr1 · · · drn

∫
dt1 · · · dtn

∫
dr dt e−ik·r+i�t

× 〈T̂ Ĵ0(r, t)Ĵ0(r1, t1) · · · Ĵ0(rn, tn)〉 (1.3)

whereV is the total volume,T̂ is the time-ordering operator and̂J0 is the static current
operator [3].

If we choose the static dipole–dipole (DD-) correlation, thenth-order susceptibilities will
be obtained as follows [3–7]:

χ(n)(�;ω1, . . . , ωn) = 1

n!

[
i

h̄

]n 1

V

∫
dr1 · · · drn

∫
dt1 · · · dtn

∫
dr dt e−ik·r+i�t

× 〈T̂ D̂(r, t)D̂(r1, t1) · · · D̂(rn, tn)〉 (1.4)

whereD̂ is the static dipole operator.
It is commonly held that the zero-frequency divergence (ZFD) seen in the static current

expression, equation (1.2), is only an apparent problem, and that the gaugesE · r andp ·A
will give exactly the same results for the same unperturbed wavefunctions [8]. In other words,
equation (1.2) and equation (1.4) should lead to the same result if one proceeds correctly.
In linear response theory, for a homogeneous and isotropic medium, Martin and Schwinger
have shown that the ZFD in the conductivityσ (1) arising from current expressions can be
cancelled by introducing a diamagnetic term (anA2-term) [9]. The cancellation of the ZFD
in the linear conductivity by a diamagnetic term is also discussed by Mahan, and Haug and
Jauho in their famous books [2,10], with careful consideration of the limit sequence fork and
ω†. In the solid state, for full and empty bands, Aspnes had shown the equivalence of two
gauges (equation (1.2) and equation (1.4)) in a demonstration based on the assumption of the
cancellation of a ZFD term, equation (2.6), in his seminal work onχ(2)-computations [11].
These works have strengthened the common belief in the equivalence of the two gauges as
regards the static dipole and the static current expressions. Also, the notion that the ZFD is
merely an apparent problem has usually been accepted with limited justification.

Although the ‘apparent’ nature of this ZFD has been emphasized by many people,
strictly speaking, as far as we are aware, the solution to this ZFD problem is seldom directly
obtained from aJ0J0-correlation (like equation (1.2)) unlike in Martin and Schwinger’s original
proof [9]. As we see in the calculation ofχ(2) for the solid state, the ZFD term is conventionally
isolated from the convergent term and is then discarded without a careful direct check [11].
Historically, this ZFD problem has been of no interest in view of the following facts:

† Mahan and Haug suggest a possible sequence limit [2, 10]: firstly setting the wavevectork → 0, and secondly
setting the frequencyω→ 0 when considering the linear conductivityσ (1) at zero frequency. If the long-wavelength
limit applies, the sequence condition fork andω is automatically satisfied.
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(i) The gauge transformations seem to guarantee the equivalence of the two gauges for the
same set of wavefunctions.

(ii) In transport theory [10,12], the correct imaginary part of theJ0J0-correlation (Re[σ (1)(ω)])
can still be obtained.

(iii) The ZFD problem (related to Im[σ (1)(ω)]) can usually be avoided by applying the
Kramers–Kronig (KK) relations to the imaginary part of theJ0J0-correlation [2,10,12,14].

Thus the equivalence of the two gauges has become well accepted in the community, and the
ZFD is widely considered to be at most a complex technical problem [2,10].

Besides the assumptions made in the previous ZFD proofs [2, 3, 9–11], however, in
practical applications, there are always some puzzles challenging the above common belief.
In a careful study of the choice of gauge for two-photon 1s–2s transitions of the hydrogen
atom [8], Bassani, Forney, and Quattropani have found that on directly applying exactly the
same unperturbed wavefunctions, theE·r gauge leads to much faster convergence than thep·A
gauge when using a limited number of discrete intermediate states; numerical computations
also show a 50% difference in transition rate between these gauges if we just include all discrete
intermediate states. Thus, Bassaniet al draw the conclusion thatE · r is a better gauge. Also,
in the study of oscillator strength in a superlattice by Peeterset al, it turns out thatE · r and
p·A are non-equivalent gauges in the barrier region according to numerical computations [15].
Thus, in contrast to the above, Peeterset al concluded that the position operatorr in the solid
state should be redefined and thatp ·A is much the better gauge. A recent study on a zinc-
blende semiconductor [16] again raises questions regarding the equivalence of the roles of
E · r andp ·A in representing the transition matrix of theχ(2)-formula†.

Extensive studies on the optical properties of polymers [1,17–20] have been based on tight-
binding approximation (TBA) models, such as the Su–Shrieffer–Heeger (SSH) model [21]
and the Takayama–Lin-Liu–Maki (TLM) model [22] for weakly correlated systems, and
the Hubbard and Pariser–Parr–Pople (PPP) models for strongly correlated systems. These
models drastically reduce the complexity of the systems and provide a reasonable way of
obtaining real physical insight into many-body systems. For providing gauge invariance, a
U(1) phase transformation has been suggested [20, 23] for these models. Because of the use
of the static current formula without a diamagnetic term, there will be a ZFD problem in
the linear conductivityσ (1)(ω). However, this ZFD problem has in general not been pointed
out clearly and it has obviously been neglected in the previous works [17, 20]. To avoid
the ZFD inσ (1) and to obtain a convergent result, Batistic and Bishop suggest subtracting
the term〈[j0, j0]〉(ω = 0) [19], which is supposed to be a diamagnetic term derived directly
from the TBA Hamiltonian. Unfortunately, as we will show in this paper, the diamagnetic term
derived from the U(1) transformation [20] cannot directly return the expected〈[j0, j0]〉(ω = 0)
term. Moreover, the experimentally observed two-photon absorption peak [24,25] in theχ(3)-
spectrum oftrans-polyacetylene has raised wide interest in finding a theoretical explanation.
From equation (1.2), on the basis of TLM models, the two-photon cusp has been obtained
analytically [1], but this has been criticized by others in view of the dipole formula approach
and other physical concerns [26–32]. Recently, a quite different analytical form of the
χ(3)-spectrum [33] has been obtained forDD-correlation as compared to that forJ0J0-
correlation [1]. The above discrepancies have already cast some doubt on the rooted belief of
the equivalence ofJ0J0- andDD-correlations.

In this paper, we will re-examine the concepts of the gauge transformations and directly
show that the gauge phase factor, which has not been sufficiently emphasized previously

† In Khurgin and Volsin’s work [16], they pointed out the different diagonal matrix elements in theχ(2)-formula that
occur for thep ·A andE · r gauges.
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and is conventionally ignored in the current–current correlation scheme [1,3], is actually very
important in optical response theory for resolving this ZFD difficulty, and recovering equivalent
results for the two gauges (p · A andr · E). Therefore, the static current operatorĴ0 is no
longer suitable for considering the equivalence between the two gauges; instead, we should
include the induced field currents (IFC) which are introduced by the gauge phase factor. To
illustrate the effect of the gauge phase factor, rather than abstract concepts, we choose just
the linear response in one-dimensional (1D) periodic TBA models, such as the SSH and TLM
models, as our examples. The concepts of the gauge phase factor in the specific linear examples
can also be extended to the non-linear optical response theory and two-dimensional (2D) or
three-dimensional (3D) cases.

The paper is organized as follows. In section 2, we will re-examine the concept of the
gauge transformation and discuss the importance of the gauge phase factor in optical response
theory. The problems caused by ignoring the gauge phase factor are discussed within a general
scheme, independent of the models. To give an intuitive picture, the linear optical response
in periodic TBA models, such as SSH and TLM models, is investigated in this paper. The
Hamiltonian forDD-correlation (E · r gauge) is discussed (section 3.1), and we will study
the linear susceptibilityχ(1) for DD-correlation in section 3.2.χ(1) under current–current
correlation is discussed in section 4. The SSH Hamiltonian in thep ·A gauge will be obtained
in section 4.1. Before applying the gauge phase factor, the ZFD problem ofχ(1) arising
from J0J0-correlation is illustrated in section 4.2; previous qualitatively different solutions for
χ(1) and the practical difficulties in this ZFD problem are also analysed on the basis of the
models (section 4.2). After applying the gauge phase factor to the wavefunctions, a convergent
result can be obtained and the ZFD problem will be resolved (section 4.3). The conditions
for equivalence between the two gauges are discussed in section 5.1 and the influence of the
gauge phase factor on the initial distribution functionfn(k) for the two gauges is investigated
(section 5.2). The reasons for some previous puzzles regarding the choice of gauges are
discussed in section 5.3. Conclusions emphasizing the implications of our work will be given
in section 6.

2. The gauge phase factor in gauge transformation

Gauge transformation is already well understood in optical response theory [34, 35]. The
assertion of the equivalence of two gauges rests upon the concept of gauge transformation.

If an electromagnetic field is applied, the Schrödinger equation is given by

ih̄
∂

∂t
ψ(r, t) =

[
1

2m
( p̂− qA)2 + V (r) + qφ

]
ψ(r, t) (2.1)

whereψ(r, t) is the exact wavefunction at space positionr and the specific timet , m is the
particle mass,q is the electrical charge,V (r) is the potential, andA andφ are the vector and
scalar potentials respectively, under the following transformation:

A→ A′ = A +∇f (r, t)

φ→ φ′ = φ − ∂

∂t
f (r, t)

(2.2)

wheref (r, t) is arbitrary, andA′ andφ′ are the new vector and new scalar potentials after the
transformation (2.2). It can be shown [35] that the form of the Schrödinger equation will be
exactly the same if the old wavefunctionψ undergoes the following change into the new exact
wavefunctionψ ′:

ψ → ψ ′ = eiFg(r,t)ψ = T̂G(r, t)ψ (2.3)
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where the gauge phase factorFg(r, t) is defined as

Fg(r, t) ≡ q

h̄
f (r, t). (2.4)

The above equations (2.2) and (2.3) are called the gauge transformation (orU(1) trans-
formation [23]).

The long-wavelength approximation [2,3] is used in this paper—that is, we takek = 0 in
equation (1.1), and the electric fieldE is described asE = E0e−iωt .

We consider the following initial scalar and vector potentials in theE · r gauge:

A = 0 φ = −E · r. (2.5)

After choosing the gauge phase factorFg as

Fg = qE · r
ih̄ω

= q

h̄
A′ · r (2.6)

from equation (2.2) we obtain the new vector and new scalar potentials for thep ·A gauge as

A′ = E

iω
φ′ = 0. (2.7)

The connection between the old and new wavefunction is determined by equation (2.3).
In perturbation schemes for studying the optical response, conventionally people use

exactly the same set of unperturbed wavefunctionsψ0
n(r, t) of the HamiltonianĤ0 (when

A = 0 andφ = 0 in equation (2.1)) to serve as the expansion basis for bothE · r and
p · A gauges [3, 5, 8]. However, we should point out that the wavefunctions for bothE · r
andp · A gauges (before and after gauge transformation) should also be restricted by the
gauge phase factorFg from equation (2.3); therefore the two basis sets for the two gauges
arenotexactly the same unperturbed wavefunctionsψ0

n(r, t)—they differ by the gauge phase
factorFg. And the Hamiltonians under the two gauges (E · r andp ·A) are not necessarily
equivalent if they are treated independently and are isolated from the connection between the
wavefunctions under the two gauges. Unfortunately, this crucial point has not been clearly
stated, and was obviously missed in the perturbation scheme studies [3, 5, 6]. In the current–
current correlation scheme, in particular, the gauge phase factor’s contribution is obviously
ignored and theA2(t)-term is considered as having no physical meaning†. Thus the current–
current correlation is conventionally reduced to aJ0J0-formula such as equation (1.2), and
the equivalence between current–current and dipole–dipole correlations is usually considered
as represented byJ0J0- andDD-correlations with exactly the same basis of unperturbed
wavefunctions [1,3,5,8,11,15].

An elegant review by Langhoff, Epstein, and Karplus covered the topics of time-
dependent perturbation theory [36]; they firmly pointed out that the time-dependent phase in
a wavefunction is very much essential and that the incorrect treatment of the time-dependent
phase will cause secular divergence in time-dependent perturbations. In field theory, it is also
well understood that inappropriate treatment of the phase factor will cause divergence [2].
Since the gauge phase factor, equation (2.6), is obviously time dependent, neglecting this
phase factor will cause a ZFD in the susceptibility computations, as in the examples that we
will provide in the following sections.

† On p 111 of Butcher and Cotter’s book [3], they directly pointed out that theA2(t) term has no physical effects and
merely introduces a time-dependent phase factor into the wavefunction. Thus, forn > 2, obviously equation (1.4)
and equation (1.2) simply effect the followinĝD–Ĵ replacement:D̂ → Ĵ/(iωi). (See p 107 of [3].) Although
in Bloembergen’s notes [5]A2(t) is seemingly included in theχ(2)-derivations (p 35), the results obtained by
Bloembergen (equation (2-48)) are exactly the same as the results obtained without considering theA2(t) terms.
(See equation (4.61) given by Butcher and Cotter [3] with theD̂–Ĵ replacement.) This shows thatχ(2)-computation
is a special case in non-linear susceptibility [11]. And in theχ(3)-derivations on p 172 of [5], the expansion basis is
the unperturbed wavefunctions.
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3. Linear response from dipole–dipole correlation

Having appreciated the importance of the gauge phase factor, we choose the following single-
electron periodic models—the SSH (or Hückel) model and the TLM model—as our examples
for the following reasons:

(i) These periodic models were widely applied in polymer theory in the 1980s and early
1990s; remarkable results have been obtained [37].

(ii) The optical susceptibilities obtained from these models are analytically solvable and can
be compared with previous results [17,20].

(iii) In both the SSH and the TLM models, Peierls instability [37] leads to the semicond-
uctivity of the two-band structure—with the valence band fully filled and the conduction
band empty. It is very obvious from the physical point of view that, as the frequency of
the electrical field goes 0 (reaches the static electric field), the linear conductivityσ (1) and
the linear susceptibilityχ(1) will not be reduced to the Drude formula as in the case of
metals [12,13], and will not cause a ZFD problem.

In this section, we will first discussχ(1) andσ (1) for infinite chains (where the number of
(CH) unitsN goes to infinity) under theDD-correlation.

3.1. The SSH Hamiltonian

Based on the periodic TBA, the SSH Hamiltonian [21] is given by

HSSH = −
∑
l,s

[
t0 + (−1)l

1

2

]
(Ĉ

†
l+1,s Ĉl,s + Ĉ†

l,s Ĉl+1,s) (3.1)

wheret0 is the transfer integral for the nearest-neighbour sites,1 is the gap parameter, and
Ĉ

†
l,s (Ĉl,s) creates (annihilates) aπ -electron at sitel with spins. In the continuum limit, the

above SSH model will give the TLM model [22]. For the SSH model, each site is occupied by
one electron.

If we want to include the electron–photon interactionE · r directly via the polarization
operatorP̂ , where

P̂ =
∑
l

RlĈ
†
l Ĉl (3.2)

and

Rl = la + (−1)lu (3.3)

is the site-l position with the lattice constanta and dimerized constantu [21], we will face
the problem of ill definition ofP̂ in periodic systems [11, 15, 20]. To solve this problem, we
consider an imposed periodic condition for the position operatorr [14, 15]. Expressing the
position operatorr in terms of Bloch states|n,k〉 = un,k(r)eik·r, whereun,k(r) is a function
that is periodic under translation by a lattice vector [14], we will be able to satisfy the periodic
condition forr as follows:

rnk,n′k′ = iδn,n′∇kδ(k − k′) +�n,n′(k)δ(k − k′) (3.4)

and

�n,n′(k) = i

v

∫
v

u∗n,k(r)∇kun′,k(r) dr (3.5)

wherev is the unit-cell volume.
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We diagonalize the Hamiltonian equation (3.1) in the momentum space by applying
consecutive transformations under the operatorsĈ

†
l andĈl [21]. The excitations of electrons

in the conduction band and valence band with momentumk and spins, â†c
k,s(t) and â†v

k,s(t),
respectively, are obtained.

If we choose the spinor description̂ψ†
k,s(t) = (â

†c
k,s(t), â

†v
k,s(t)), the SSH Hamiltonian

includingE · r in momentum space is described by

ĤSSH (k, t) = Ĥ0 + ĤE·r (3.6)

where

Ĥ0 =
∑

−π/(2a)6k6π/(2a),s
ε(k)ψ̂

†
k,s(t)σ3ψ̂k,s(t) (3.7)

and

ĤE·r = −D̂E0eiωt . (3.8)

From equation (3.4), the dipole operatorD̂ can be obtained as follows:

D̂ = e
∑

−π/(2a)6k6π/(2a),s

(
β(k) ψ̂

†
k,sσ2ψ̂k,s + i

∂

∂k
ψ̂

†
k,sψ̂k,s

)
(3.9)

where

β(k) = −1t0a
ε2(k)

+ u (3.10)

is the coefficient related to the interband transition between the conduction and valence bands
in a unit cell of size 2a and the second term in equation (3.9) is related to the intraband trans-
ition [11], e is the electric charge, and theEσ are the Pauli matrices.u is a dimerized constant
related to the lattice distortion [21].

3.2. Linear response through theE · r gauge

For the linear susceptibility,χ(1)SSH (�,ω1) can be obtained from equation (1.4) and equ-
ation (3.9):

χ
(1)
SSH (−ω1, ω1) = 2

[
i

h̄

]
e2 1

L

∑
k

∫ ∞
−∞

Tr

{
i
∂

∂k

[
G(k, ω) i

∂

∂k
[G(k, ω − ω1)]

]
+ β(k)σ2G(k, ω) i

∂

∂k
[G(k, ω − ω1)] + i

∂

∂k
[β(k)G(k, ω)σ2G(k, ω − ω1)]

+ β(k)σ2G(k, ω)β(k)σ2G(k, ω − ω1)

}
dω

2π
(3.11)

whereL is the total chain length and the Green functionG(k, ω) is the Fourier transform of
G(t − t ′) ≡ −i〈T̂ ψ̂(t)ψ̂†(t ′)〉, given as follows:

G(k, ω) = ω + ωkσ3

ω2 − ω2
k + iε

(3.12)

with ωk ≡ ε(k)/h̄ andε ≡ 0+.
From equation (3.11), we haveχ(1)SSH (ω)≡ χ(1)SSH (−ω,ω):

χ
(1)
SSH (ω) =

e2(2t0a)

2π12

∫ 1/δ

1

(1− ηδx2)2 dx

[(1− δ2x2)(x2 − 1)]1/2x2(x2 − z2)
(3.13)
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wherex ≡ h̄ωk/1, z ≡ h̄ω/(21), δ ≡ 1/(2t0), and the relative distortionη ≡ (2u)/a.
Equation (3.13) can be integrated numerically if one changesx to x + iε when considering
the lifetime of the state [26–29]. For polyacetylene, by choosingt0 = 2.5 eV,1 = 0.9 eV,
a = 1.22 Å,u = 0.04 Å, andε ∼ 0.03 [26–29], we obtainδ = 0.18 andη = 0.07. The values
of |χ(1)SSH | with and without theη-contribution are plotted in figure 1. As we can clearly see
from the graph, the contribution of the relative distortionη is very small (about 1%). We can
observe the ‘Umklapp-enhancement’ peak atz = 1 compared with the peakz = 5.56 (1/δ).
These results were also discussed in previous work [20].
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ω
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Figure 1. |χ(1)SSH (ω)| with z ≡ h̄ω/(21), ε = 0.03,
δ = 0.18, and forη = 0.07 (solid line) orη = 0
(dashed line).

If the continuum limit is applied—that is,δ→ 0+, η→ 0+, ε → 0+, and 2t0a→ h̄vF—
then the above integral equation (3.13) approaches the linear optical susceptibilityχ

(1)
T LM(ω)

in the TLM model [22] as follows:

χ
(1)
T LM(ω) = −

e2h̄vF

2π12z2
(1− f (z)) (3.14)

where

f (z) ≡


arcsin(z)

z
√

1− z2
z2 < 1

−cosh−1(z)

z
√
z2 − 1

+
iπ

2z
√
z2 − 1

z2 > 1.

(3.15)

The conductivityσ(ω) is given by−iωχ(1), and Re[σ (1)(ω)] is exactly the same as previous
results [17,20].

The calculatedχ(1)T LM and the absolute value ofχ(1)T LM are shown in figure 2 and figure 3,
respectively.

Indeed, the above computations are based on the perturbation scheme withψ̂
†
k,s(t) and

ψ̂k,s(t) as the unperturbed creation and annihilation operators under the HamiltonianĤ0

(equation (3.7)). From the above figures and expressions, it is very obvious that theDD-
correlation (orE · r) approach will not have a ZFD inχ(1) or σ (1). Straightforward comput-
ations readily show that equation (3.13) and equation (3.14) obey the KK relations. These
results are certainly reasonable in view of the physical picture.
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Figure 2. The real part (solid line) and the
imaginary part (dashed line) ofχ(1)T LM(ω) with
z ≡ h̄ω/(21).
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Figure 3. |χ(1)T LM(ω)| with z ≡ h̄ω/(21).

4. Linear response through current–current correlation

4.1. The SSH Hamiltonian in the vector potential form

The tight-binding Hamiltonian in thep ·A form should be invariant under gauge transform-
ation (equation (2.2) and equation (2.3)) [20, 23]. If we change the phase of the one-particle
wavefunction in the tight-binding approximation:

Ĉ ′s(r) = eiθ Ĉs(r) (4.1)

we must modify the kinetic energy term. The unperturbed HamiltonianĤ0 in the Wannier-
function basis as follows:

H0 ≡
∑
s,r,r′

t (r − r′)(C†
s (r)Cs(r

′) +C†
s (r
′)Cs(r)) (4.2)

is modified as

H0→ H ′0 =
∑
s,r,r′

t (r − r′)
[
C ′†s (r) exp

(
−iq

∫ r′

r

dx ·A(x)/h̄
)
C ′s(r

′)

+ C ′†s (r
′) exp

(
iq
∫ r′

r

dx ·A(x)/h̄
)
C ′s(r)

]
(4.3)
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wheret (r− r′) represents the hopping from positionr to r′, C†
s (r) creates an electron at site

r with spins, q is the particle charge. The above transformation is also known as the Peierls
substitution [20]. Equation (4.3) has some kind of general meaning in TBA models and is
frequently applied in theoretical work [38].

If the functionf (r, t) is arbitrary in equation (2.2), it is easy to verify that the above TBA
Hamiltonian equation (4.3) is invariant if the local phaseθ in equation (4.1) is defined as

θ(r, t) ≡ q

h̄
f (r, t) ≡ q

h̄
A · r. (4.4)

As a specific example, the SSH Hamiltonian with the vector potentialA should be as
follows (we changeA toA since it is the 1D case ande is the electron charge)†:

HSSH (A) = −
∑
l,s

[
t0 + (−1)l

1

2

]
(Ĉ
′†
l+1,se

−ieA(Rl−Rl+1)/h̄Ĉ ′l,s + Ĉ ′†l,se
ieA(Rl−Rl+1)/h̄Ĉ ′l+1,s).

(4.5)

Equation (4.5) has been derived in full detail by Gebhardet al [20].

4.2. The result without the gauge phase factor

Under the assumption that the gauge phase factor (4.4) has no physical meaning [3], we
ignore the phaseθ and treat the creation and annihilation operators{Ĉ ′†l } and {Ĉ ′l} as the
same as the unperturbed creation and annihilation operators{Ĉ†

l } and{Ĉl} [20,23] defined in
equation (3.1).

The abovep · A Hamiltonian equation (4.5) can be expanded in powers of the external
vector potentialA, and we obtain the following:

ĤSSH (A) = Ĥ0 − Ĵ0A + O(A2) (4.6)

whereH0 is given by equation (3.1), and

Ĵ0 = −
∑
l,s

i
e

h̄

[
t0 + (−1)l

1

2

] [
a − 2(−1)lu

]
(Ĉ

†
l+1,s Ĉl,s − Ĉ†

l,s Ĉl+1,s). (4.7)

The current operator̂J is obtained from the following equation:

Ĵ = i

h̄
[P̂ , Ĥ ]. (4.8)

From equation (3.2) and equation (4.6), we obtain the current operator for the SSH
Hamiltonian as follows:

ĴSSH = Ĵ0 + Ĵ1A (4.9)

whereĴ0 is defined by equation (4.7), and̂J1 is defined as follows:

Ĵ1 = −
∑
l,s

(
e

h̄

)2 [
t0 + (−1)l

1

2

] [
a − 2(−1)lu

]2
(Ĉ

†
l+1,s Ĉl,s + Ĉ†

l,s Ĉl+1,s). (4.10)

As in the computations in section 3, we transform the Hamiltonian equation (4.6) and the
current operators equation (4.7) and equation (4.10) into the momentum space and obtain the
following:

Ĵ0(k) = ea

h̄

∑
k,s

[
A0(k)ψ̂

†
k,s(t)σ3ψ̂k,s(t) +B0(k)ψ̂

†
k,s(t)σ1ψ̂k,s(t)

]
(4.11)

† Please bear in mind that we have not written out another term—the scalar potentialφ(Rl, t), which is time dependent
in the above Hamiltonian equation (4.5). However, in section 4 (thep ·A case), that term is 0. Theφ(Rl, t) term will
appear if the gauge transformation is made.



Zero-frequency divergence and the gauge phase factor 9833

and

Ĵ1(k) =
(
ea

h̄

)2∑
k,s

[
A1(k)ψ̂

†
k,s(t)σ3ψ̂k,s(t) +B1(k)ψ̂

†
k,s(t)σ1ψ̂k,s(t)

]
(4.12)

with A0(k), B0(k), A1(k), andB1(k) defined as follows:

A0(k) = − (2t0)
2(1− δ2) sin(2ka)

2ε(k)

B0(k) = −2t01

ε(k)
+ ηε(k)

(4.13)

and

A1(k) = (1 +η2)ε(k)− 4t01η

ε(k)

B1(k) = (2t0)2η(1− δ2) sin(2ka)

ε(k)
.

(4.14)

η, δ, andε(k) in the above equations are defined the same way as in section 3.
Applying equation (1.2) and equation (1.3), and considering the diamagnetic current

Ĵ1(k)A obtained from the above SSH Hamiltonian equation (4.6), we obtain the linear
susceptibility underJ0J0-correlation as follows:

χ
′(1)
SSH (−ω1, ω1) =

χ
′(1)
j0j0
(−ω1, ω1)

−iω2
1

+
χ
′(1)
j1
(−ω1, ω1)

−iω2
1

(4.15)

with

χ
′(1)
j0j0
(−ω1, ω1) = 2

[
1

h̄

](
ea

h̄

)2 1

L

∑
k

∫ ∞
−∞

Tr{A0(k)σ3G(k, ω)A0(k)σ3G(k, ω − ω1)

+ A0(k)σ3G(k, ω)B0(k)σ1G(k, ω − ω1)

+ B0(k)σ1G(k, ω)A0(k)σ3G(k, ω − ω1)

+ B0(k)σ1G(k, ω)B0(k)σ1G(k, ω − ω1)} dω

2π
(4.16)

χ
′(1)
j1
(−ω1, ω1) = −2

(
ea

h̄

)2 1

L

∑
k

∫ ∞
−∞

Tr{A1(k)σ3G(k, ω − ω1)

+ B1(k)σ1G(k, ω − ω1)} dω

2π
(4.17)

where the Green functionG(k, ω) is defined by equation (3.12). By straightforward comput-
ation, we can obtain the following:

χ
′(1)
j0j0
(ω) = −2i

e2(2t0a)

πh̄2

∫ 1/δ

1

(1− ηδx2)2 dx

[(1− δ2x2)(x2 − 1)]1/2(x2 − z2)
(4.18)

and

χ
′(1)
j1
(ω) = 2i

e2(2t0a)

πh̄2

∫ 1/δ

1

[(1 +η2)δ2x2 − 2ηδ] dx

[(1− δ2x2)(x2 − 1)]1/2
. (4.19)

Equation (4.19) is a constant independent ofz and it is obviously not the term〈[j0, j0]〉(ω = 0)
suggested by Batistic and Bishop [19].
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From equation (4.15), equation (4.18), and equation (4.19), we obtain

χ
′(1)
SSH (ω) =

e2(2t0a)

2π12z2

{∫ 1/δ

1

(1− ηδx2)2 dx

[(1− δ2x2)(x2 − 1)]1/2(x2 − z2)

−
∫ 1/δ

1

[(1 +η2)δ2x2 − 2ηδ] dx

[(1− δ2x2)(x2 − 1)]1/2

}
(4.20)

wherex,1, z, δ, andη are all the same as in equation (3.13).
If the continuum limit is applied (as in section 3), we find that the contribution

(equation (4.19)) from the diamagnetic term (theJ1-term) disappears. We obtain the following
susceptibility under TLM models:

χ
′(1)
T LM(ω) =

e2h̄vF

2π12z2
f (z) (4.21)

wheref (z) is defined by equation (3.15).
We plot |χ ′(1)SSH |, χ ′(1)T LM , and|χ ′(1)T LM | in figure 4, figure 5, and figure 6, respectively, with

the same parameters as in section 3. From the analytical form equation (4.21) and the figures,
we find that the first term in equation (3.14) disappears in thisJ0J0-formula; however, this
important feature has not been reported in the previous works [17,20].
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Figure 4. |χ ′(1)SSH (ω)| obtained through

J0J0-correlation (solid line) versus|χ(1)SSH (ω)|
obtained throughDD-correlation (dashed
line) with z ≡ h̄ω/(21), for ε = 0.03, η =
0.07, andδ = 0.18. |χ ′(1)SSH (ω)| obviously
shows the ZFD if the gauge phase factor is
not considered.

Within TLM models, the missing diamagnetic term can be understood directly from
the Lagrangian†, which only contains the first-order terms of the momentum operatorp̂.
Obviously, equation (4.20) and equation (4.21) strongly diverge whenz→ 0 for the real parts
in both equation (4.20) and equation (4.21). The above results are certainly wrong, since they
do not follow the KK relations—besides the ZFD problem. Careful comparisons were made
between equations (4.20), (4.21) and equations (3.13), (3.14); it was found that the correct
imaginary parts obtained from theJ0J0-correlation equation (1.2) and equation (1.3) are still
maintained. The comparisons also show that the absorption part (related to imaginary part)
based on theJ0J0-correlation will still be correct. This conclusion is not novel to those working
on the transport problem: that the Kubo formula based onJ0J0-correlation can be applied is

† The Lagrangian for the TLM models is described as [1, 22]L = ∫ dx ψ̂†(x){ih̄ ∂t + iσ3vF ∂x + σ11}ψ̂(x). The
vector potentialA is included by changing−ih̄ ∂x to ih̄ ∂x − eA; it does not contain theA2-term from the Lagrangian
directly.
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Figure 5. The real part (solid line) and the imaginary part (dashed line) ofχ
′(1)
T LM(ω) with

z ≡ h̄ω/(21). This shows the ZFD that is present in the real part when the gauge phase factor is
not considered.
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Figure 6. |χ ′(1)T LM(ω)| obtained through theJ0J0-correlation (solid line) compared with|χ(1)T LM(ω)|
obtained through theDD-correlation orJJ -correlation, considering the gauge phase factor (dashed
line) with z ≡ h̄ω/(21). |χ ′(1)T LM(ω)| shows a ZFD.

already common knowledge [2]. People usually resort to the KK relation to avoid the real-part
ZFD difficulty [12].

But how to explain these difficulties (such as the ZFD and violation of the KK relation in
equation (4.20) and equation (4.21)) now becomes a task. The long-wavelength approximation
used in the above examples already eliminates the possible ZFD caused by the limit sequence for
k andω†. One might argue that the ZFD problem could be solved by including a diamagnetic
term, such as the effective massm∗, and that the electron-density (n0) assumption can be
made in this solid-state problem [13,14]. In fact, these assumptions are awkward, because the
parametersm∗ andn0 in diamagnetic terms cannot be predicted in the models. For example,

† Mahan and Haug suggest a possible sequence limit [2, 10]: firstly setting the wavevectork → 0, and secondly
setting the frequencyω→ 0 when considering the linear conductivityσ (1) at zero frequency. If the long-wavelength
limit applies, the sequence condition fork andω is automatically satisfied.
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in the above SSH and TLM models,m∗ andn0 could be arbitrary [37]. In the TLM model, you
cannot include the diamagnetic term directly from the Lagrangian†. For the SSH model, the
diamagnetic term can be included in equation (4.9) from the TBA Hamiltonian equation (4.6),
but you still cannot solve this ZFD problem, as we clearly see from figure 4 and equation (4.20).
Moreover, if one uses diamagnetic terms to cancel the ZFD, the assumption regarding this
property of the medium should be included in the proof [2,9,10].

The conventional way to treat this ZFD problem is to separate the divergent terms from the
convergent term and discard them, with some possible physical explanations [11]. Fortunately,
in linear response theory, neglect of the diamagnetic term does not cause so much trouble, since
the imaginary part of theJ0J0-correlation is still correct [2, 10, 12]. It is not a big surprise
that people have not taken this ZFD problem seriously, although doubts have always existed
regarding the two gauges, especially in models [8,15,35].

4.3. Resolving the ZFD by using the gauge phase factor

As we demonstrated above, the diamagnetic term directly obtained from equation (4.5) cannot
solve the ZFD problem. This ZFD problem, which is a conceptual problem as we have already
pointed out in section 2, is caused by the conventional careless treatment of the gauge phase
factor in optical response theory. In this part, after considering the contribution of the gauge
phase factor in theJJ -correlation, we will recover the same results forχ(1) as were obtained
from theDD-correlation within both the SSH and TLM models.

As we discussed in section 2, the new creation operatorĈ
′†
l and annihilation operator̂C ′l in

equation (4.5) should be differentiated by the gauge phase factor from the unperturbed creation
operatorĈ†

l and annihilation operatorŝCl . Following equation (2.3), we obtain the following,
after the local phase factor is considered‡:

Ĉ ′l = eieARl/h̄Ĉl . (4.22)

Thus, by the above relation, the Hamiltonian in momentum space should undergo the
following change:

Ĥ (k)→ Ĥ (κ) (4.23)

where

κ = k +
eA

h̄
. (4.24)

For the SSH Hamiltonian, we have the following new Hamiltonian:

Hnew(k) = Hnew
0 (k) +Hnew

1 (k)A + O(A2) (4.25)

whereHnew
0 (k) is defined as in equation (3.7) and

Hnew
1 (k) = −ea

h̄

∑
k

B0(k)ψ̂
†
k,s(t)σ1ψ̂k,s(t). (4.26)

The new current operator̂J new(k) can be obtained from the commutator equation
[D̂(k), Ĥ new(k)]/(ih̄) as follows:

Ĵ new(k) = Ĵ new0 (k) + Ĵ new1 (k)A + O(A2) (4.27)

† The Lagrangian for the TLM models is described as [1, 22]L = ∫ dx ψ̂†(x){ih̄ ∂t + iσ3vF ∂x + σ11}ψ̂(x). The
vector potentialA is included by changing−ih̄∂x to ih̄ ∂x − eA; it does not contain theA2-term from the Lagrangian
directly.
‡ Strictly speaking, this gauge phase factor in this paper is an approximate of the diagonal elements in the matrix of
the dipole operator̂D [20,23]. As in the example we give above, the diagonal term is enough for obtaining convergent
results in the linear case. But for non-linear cases likeχ(2) andχ(3), the non-diagonal terms of thêD-matrix will be
important for cancelling the ZFD problem through theJJ -correlation. Certainly the procedures for including the full
gauge phase factor will be complicated and thus impractical for theJJ -correlation.
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whereĴ new0 (k) is exactly the same as equation (4.11) and

Ĵ new1 (k) =
(
ea

h̄

)2∑
k,s

[
Anew1 (k)ψ̂

†
k,s(t)σ3ψ̂k,s(t) +Bnew1 (k)ψ̂

†
k,s(t)σ1ψ̂k,s(t)

]
(4.28)

where

Anew1 (k) = B2
0(k)

ε(k)

Bnew1 (k) = −A0(k)

[
2t01

ε2(k)
+ η

]
.

(4.29)

A0(k) andB0(k) are defined in equation (4.13).
After considering the gauge factor, we find that the new current operatorJ new0 (k) is the

same as the static currentJ0(k), but thatJ new1 (k) is different from the static currentJ1(k); we
call the current differences betweenJ new(k) and the static currentsJ0(k), J1(k), etc induced
field currents (IFC), since they are introduced by the gauge field.

Through the evolution operator in the interaction picture [2], it is easy to derive the formula
for theχ(1)jj as follows:

χ
(1)
jnewjnew (−ω1, ω1) =

χ
(1)
jnew0 hnew1

(−ω1, ω1) + χ(1)jnew1
(−ω1, ω1)

−iω2
1

(4.30)

where

χ
(1)
jnew0 hnew1

(−ω1, ω1) = 2

[
1

h̄

](
ea

h̄

)2 1

L

∑
k

∫ ∞
−∞

Tr{A0(k)σ3G(k, ω)B0(k)σ1G(k, ω − ω1)

+ B0(k)σ1G(k, ω)B0(k)σ1G(k, ω − ω1)} dω

2π
(4.31)

χ
′(1)
jnew1
(−ω1, ω1) = −2

(
ea

h̄

)2 1

L

∑
k

∫ ∞
−∞

Tr{Anew1 (k)σ3G(k, ω − ω1)

+ Bnew1 (k)σ1G(k, ω − ω1)} dω

2π
. (4.32)

Equation (4.31) gives exactly the same result as equation (4.18), which is computed
throughJ0J0-correlation, while the contribution fromJ new1 in equation (4.32) can be obtained
as

χ
′(1)
jnew1
(ω) = 2i

e2(2t0a)

πh̄2

∫ 1/δ

1

(1− ηδx2)2 dx

[(1− δ2x2)(x2 − 1)]1/2x2
. (4.33)

The above term (4.33) actually is〈[j0, j0]〉(ω = 0), suggested by Batistic and Bishop [19].
Using equation (4.18) and equation (4.33), equation (4.30) leads to exactly the same result

as equation (3.13) and equation (3.14), which were computed through theDD-correlation.

5. Discussion

5.1. The condition for equivalence between two gauges

The above examples based onJ0J0- andDD-correlations show the importance of the gauge
phase factorFg in optical response theory. The equivalence of the two gauges (E · r and
p · A) should not be based on exactly the same sets of wavefunctions; they should differ by
the gauge phase factor. This crucial point has never been clearly pointed out previously. The
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conventional equivalence between the static current–current (J0J0-) correlation and the static
dipole–dipole (DD-) correlation is not maintained; instead, we should consider the induced
field currents (IFCs) which are introduced by the gauge phase factor. For example, to consider
χ(1) in the periodic models, we should apply the phase shift fromk to κ (κ ≡ k + eA/h̄)
for the basis wavefunctions (or through the creation and annihilation operators in models) to
obtain the new current operator̂J new. Thus, the equivalence between current–current and
dipole–dipole correlations should be understood as the situation when all IFCs are included.
This paper’s conclusion that the time-dependent gauge phase factorFg cannot be ignored in
the perturbation scheme is also consistent with the results of Langhoffet al [36].

5.2. The initial distribution function in two gauges

In optical response theory, one is much more interested in the population of the states than the
phase factor. Recently, femtochemistry experiments [39] have been able to reveal the phase
factor’s effect from the vibrational modes of nuclei as distinct from the population effect (or
distribution function) of states. To some extent, the phase factor’s influence on the optical
response has begun to attract interest. Although our treatment of the optical susceptibilities is
still in the framework of non-vibrational nuclei, the gauge phase factor’s effect in the theory
is still visible in the above computations.

Another important feature caused by the gauge phase factorFg is the influence on the
initial distribution functionfn(k) of the two gauges. If all particles are in the ground stateψ0

g

of the unperturbed Hamiltonian̂H0 when the electric fieldE is applied at timet = 0, under
the perturbation scheme we can use the set of unperturbed wavefunctions{ψ0

n } with the initial
distribution function

fg(k) = 1

fn(k) = 0 for all othern 6= g. (5.1)

Previously, we used exactly the same initial distribution function, like equation (5.1), for both
gauges.

As we showed in the previous sections, the exact wavefunctions for the two gauges
should differ by a time-dependent gauge phase factor. This conclusion also holds under the
perturbation scheme. Thus, the initial distribution functions in two different gauges are not
necessarily exactly the same as equation (5.1), and they should be carefully considered when
choosing the basis sets.

Specifically, for theE ·r gauge, we should choose unperturbed wavefunctions as the basis
to avoid the ZFD directly†; then the initial distribution function can be equation (5.1), since
the initial ground state isψ0

g . But for thep ·A gauge, since the new ground state should be
eiFgψ0

g according to equation (2.3), there are two ways to set the initial distribution function:

(i) If we have already considered the gauge phase factor in our new basis set—that is, if we
use{eiFgψ0

n } as our basis—the distribution function is still like equation (5.1).
(ii) If we still use the unperturbed wavefunction{ψ0

n } as our basis, we should project the initial
wavefunction eiFgψ0

g onto the basis set{ψ0
n } instead of directly applying equation (5.1) as

our initial distribution function.

The latter is much more complicated, since the initial set of distribution functions will be time
dependent. In the previous example that we gave, we used the first method under the local

† In fact, this point has not been pointed out clearly previously, even in the Genkins–Mednis approach;χ(1) is defined
in terms ofκ instead ofk. Since the basis for theE · r gauge is chosen to be the exact eigenstates under thep ·A
gauges, this will cause a ZFD directly underE · r gauges even for linear conductivity! Please see [40].
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phase approximation†. Both ways of treating the initial distribution function for thep · A
gauge are complicated; in this respect, the gaugeE · r is much better. This conclusion has
actually already been tested in practical applications [2–8,10,11,26–33].

5.3. Some previous puzzles

In explaining the non-equivalence of results for the two gauges, some of the literature has been
emphasized by others‡. However, such explanations have lacked direct proof, and the effect
of the gauge phase factor has been ignored. The above two subsections provide qualitative
explanations for the non-equivalence puzzles for the two gauges that arise in the numerical
computations [8, 11, 33]. On the basis of the same set of unperturbed wavefunctions [8], the
computations of Bassaniet al showed that for theE · r gauge the convergence is much faster
than for thep ·A gauge, and reveal that the distribution equation (5.1) is appropriate for the
E · r case but not for thep ·A case, which is certainly reasonable in view of our discussion
in section 5.2. Theχ(2)-computation is a special case [11]§, since some terms could be zero
if symmetry is applied [35]. Unfortunately, non-equivalences of the results for theJ0J0-
correlation andDD-correlation are magnified in theχ(3)-computations. As an example, the
spectra ofχ(3) for polyacetylene are different for the two gauges [1, 33]. These differences
can be understood qualitatively through considering the gauge phase factor.

6. Conclusions

From the computations and discussion above, we concluded that equation (1.2) based on the
static current is improper and leads to a ZFD problem; thus, IFCs generated from the gauge
phase factor should be included to resolve this difficulty. Generally speaking, the Hamiltonians
under the two gauges are not necessarily equivalent unless the gauge phase factor is considered
properly through the wavefunctions. Because of the problems regarding the choice of the initial
distribution function and the basis sets under the two gauges (section 5.2), it would be very
tedious to carry out perturbation computations based on thep ·A gauge rather than theE · r
gauge. If a careful computation was made based on the concept of the gauge phase factor,
the two gauges would lead to equivalent results. Although our computations are chiefly based
on a 1D periodic model, it can easily be seen that the chief conclusions of this paper can be
expanded to 2D, 3D, and other systems on the basis of the general illustrations in section 2.
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